7.7-7.20【Xin Nie】Higgs bundles, higher Teichmüller theory and minimal surfaces (I, II, III, IV)

Time:2022-07-01Views:56



Speaker:  Xin Nie (Southeast University)

Time: 09:00-10:30, Jul 7,8,19,20, 2022

Place: Room 5106, the Fifth Teaching Building



1. Holomorphic vector bundles and Higgs bundle

    • Symplectic reduction and its Kähler/hyperkähler versions

    • Relation with G.I.T. (Kempf-Ness theorem)

    • Holomorphic vector bundles, Atiyah-Bott's reduction and Narasimhan-Seshadri theorem

    • Higgs bundles, Hitchin's reduction and Hitchin-Kobayashi correspondence


 2. G-Higgs bundles and surface group representations

    • SL(2,R)-Hitchin component and Teichmüller theory

    • SL(n,R)-Hitchin component, cyclic Higgs bundles

    • Theory of semsimple Lie algebras and principal 3d subalgebras

    • G-Higgs bundles for a general Lie group G

    • SO(p,q)-Higgs bundles

         

3. Harmonic maps associated to G-Higg bundles and Labourie's conjecture

    • harmonic maps, minimal surfaces and Riemannian symmetric spaces

    • harmonic maps given by G-Higgs bundles

    • Energy functional and Labourie's conjecture

    • Strategy via Infinitesimal rigidity and the SL(3,R)-case (affine spheres)

    • Cyclic surfaces (Labourie Ann.Math.2017)


 4. Minimal surfaces in pseudo-hyperbolic spaces

    • pseudo-hyperbolic spaces

    • second variation formula and maximal surfaces

    • Relation with Teichmüller theory (Bonsante-Schlenker Invent.Math.2010)

    • Labourie's conjecture for SO(2,n) (Collier-Tholozan-Toulisse Duke.Math.J. 2019)

    • A-surfaces and their infinitesimal rigidity (speaker arXiv:2206.13357)




More details please visit: http://staff.ustc.edu.cn/~nanbei0104/